Quantitative Structure–Activity Relationships for Structurally Diverse Chemotypes Having Anti-Trypanosoma cruzi Activity

Quantitative Structure–Activity

ter, 16 jul 2019

Publicado por


de Souza, Anacleto S. 1 ; Ferreira, Leonardo L. G. 1 ; de Oliveira, Aldo S. 1, 2 ; Andricopulo, Adriano D. 1


Small-molecule compounds that have promising activity against macromolecular targets from Trypanosoma cruzi occasionally fail when tested in whole-cell phenotypic assays. This outcome can be attributed to many factors, including inadequate physicochemical and pharmacokinetic properties. Unsuitable physicochemical profiles usually result in molecules with a poor ability to cross cell membranes. Quantitative structure-activity relationship (QSAR) analysis is a valuable approach to the investigation of how physicochemical characteristics affect biological activity. In this study, artificial neural networks (ANNs) and kernel-based partial least squares regression (KPLS) were developed using anti-T. cruzi activity data for broadly diverse chemotypes. The models exhibited a good predictive ability for the test set compounds, yielding q2 values of 0.81 and 0.84 for the ANN and KPLS models, respectively. The results of this investigation highlighted privileged molecular scaffolds and the optimum physicochemical space associated with high anti-T. cruzi activity, which provided important guidelines for the design of novel trypanocidal agents having drug-like properties.

1  Laboratory of Computational and Medicinal Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos-SP 13563-120, Brazil

2  Department of Exact Sciences and Education, Blumenal Center, Federal University of Santa Catarina, Blumenau 89036-256, Brazil

Link to article:  https://www.mdpi.com/1422-0067/20/11/2801



Share on FacebookTweet about this on TwitterShare on LinkedInShare on Google+

0 Comentários